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Abstract

This paper presents two algorithms for solving sparse nonlinear systems of equations: the
CM-successive column correction algorithm and the modified CM-successive column correction
algorithm. A g-superlinear convergence theorem and an r-convergence order estimate are given
for both algorithms. The numerical results indicate that these two algorithms, especially the

modified algorithm are probably more efficient than some currently used algorithms.






1. Introduction.

Consider a nonlinear system of equations

F(z)=0, (1.1)
where F: R*—~R" is continuously differentiable on an open convex set D CR"®, and the Jacobian
matrix F “(z) is sparse. To solve the system, the following iteration is considered:

= 2F _ BF(z%),  k=0,1,..., (1.2)

where B, is an approximation to the Jacobian with the same sparsity structure.

For convenience, we rewrite (1.2) as

T =z-B'F(2), (1.3)

where r and T indicate the current iterate and the new iterate respectively, and B is an approxi-

mation to the Jacobian.

Currently, there are several algorithms to get a sparse approximation to the Jacobian. In

this paper we will discuss three types of algorithms.

(1) Schubert’s algorithm. In 1970 Schubert [17} gave a sparse modification of Broyden’s
update. Broyden [2] also gave this algorithm independently. In order to present Schubert’s algo-

rithm, we introduce the following notation concerning the sparsity pattern of the Jacobian:

Definition 1.1. For §=1,2,..., define the subspace Z; CR"™ determined by the sparse pattern of the

Jth row of the Jacobian:

Z;={v€R": ¢fv=0 for all i such that [F’(z));;=0 for all zER"},

where e; is the ¢th column of the n X n identity matrix. Define the set of matrices Z that preserve

the sparsity pattern of the Jacobian:
Z = {A€L(R*): AT¢;€Z; for j=1,2,..,n }.
Definition 1.2. For j=1,2,...,n, define the projection operator, D;EL(R"), that maps R* onto Z;:

J' = dg'ag (d’l,d,z, e v ey dj'))

where



{1, if ¢ € Z,',

dji = 0, otherwise.

I

For a scalar «€ER, define the pseudo-inverse:
{a’l, if @ 5£ 0,
=10, ifa=0.
Now Schubert’s update can be written as
— L4
B =B + Y([s)1e];)*¢;¢f(y - Bs)[s]], (1.4)
j=1
where [8]; = Djs,8 =% -z and y = F(Z) - F(z).
Let
Q.. = {AEL(R*): Au=v, for vectors u, vER"}.
The following theorem, which we will use later, was proved by Reid {15] and Marwil [9] indepen-

dently.

Theorem 1.1. Let BEZ; y, s€R™ with 85£0. Define B by (1.4). Then B is the unique solution to

min{||B - B||r : B€Q,,.nZ}, (1.5)
where ||.|| r indicates the Frobenius norm of a matrix.

The advantage of Schubert’s algorithm is that at each iteration only one function value is
required and it is g-superlinearly convergent (see Marwil [9]). However, it frequently requires more
iterations than finite difference algorithms. Moreover, it may not be a good approximation to the
Jacobian when the problem is badly nonlinear, especially when the current step is far away from

the solution. Therefore, p, = —B;'F(z*) may not be a descent direction of the functional
f(z)—-;— || F(z)||2, where ||.|| denotes the I, vector norm. In this case, it may be not good to
use a line search with Schubert’s algorithm.

(2). Finite difference algorithms. In general, a finite difference algorithm can be formulated
as follows: obtain direction vectors d,,d,, . . . , d, such that B can be determined uniquely by the

equations

Bd; = F(z+d;) - F(z), 1=12,...,p.



In this paper, we assume that it is not convenient to evaluate the function values element
by element, instead we only evaluate the value of F(z) as a single entity. This is reasonable since
in practice it is very common that the components of F(z) have expensive common sub-
expressions. In this case, to reduce the number of function evaluations, Curtis, Powell, and Reid
[4] proposed a finite difference algorithm, called the CPR algorithm, which is based on a partition
of the columns of the Jacobian. Coleman and Mor€ [3] associate the partition problem with a

graph coloring problem and gave some partitioning algorithms which can make the number of the

function evaluations optimal or nearly optimal.

Following Coleman and Mor¢, we give some definitions concerning a partition of the

columns of the Jacobian.

‘Definition 1.8. A partition of the columns of a matrix B is a division of the columns into groups

€1,€2,...,¢p such that each column belongs to one and only one group.

Definstion 1.4. A partition of the columns of a matrix B is consistent with the direct determina-
tion of B if whenever b;; is a nonzero element of B, then the group containing column j has no

other column with a nonzero element in row ¢.

As an example we consider the tridiagonal structure

(1.6)

oo oo X X
co o X X X
oo X X X ©
eX X X oo
XX Xeoeo

X X oo oo

A consistent partition of the columns of the matrix is ¢; = {1, 4}, ¢, = {2, 5}, and ¢3 = {3, 8}.

The CPR algorithm now can be formulated as follows: for a given consistent partition of the

columns of the Jacobian, obtain vectors d,,d,,...,d, such that B is determined uniquely by the

equations



Bd; = F(z+d;) - F(z) =y 1=12,..p . (1.7)

Notice that for the CPR algorithm, the number of function evaluations at each iteration is p+1.
Since the partition of the columns of the Jacobian plays an important role in the CPR algorithm,

we call the CPR algorithm based on Coleman and Mor€’s algorithms the CPR-CM algorithm.
For the consistent partition given in example (1.6), if we take

dl=(h;0;0)h70)0)r,
d2=(0rh)070)h)0)ry

dg=(0,0,h,0,0,h)T,

then B is determined uniquely and the number of function evaluations required at each iteration

is 4.

The advantage of the CPR algorithm is that it usually requires fewer iterations than
Schubert’s algorithm. However, it requires more function values at each iteration than Schubert’s

algorithm.
(3). The successive column correction algorithms.

Polak [13] gave a successive column correction algorithm for unconstrained minimization.
Feng and Li [7] developed a successive column correction algorithm for nonlinear system of equa-
tions, which is called the column-update quasi-Newton method. Using this algorithm, columns of
B, are displaced by differences successively and periodically. At each iteration, only two function

values are required, but only one column is displaced.

In this paper, we propose two algorithms: the CM-successive column correction algorithm
and the modified CM-successive column correction algorithm. The former is based on Coleman
and More€’s algorithm and the column-update algorithm. The latter is a combination of the CM-
successive column correction algorithm and Schubert’s algorithm. Both algorithms require only
two function values at each iterative step. Our numerical results show that the CM-successive
column correction algorithms, especially the modified one, are probably more efficient than the

CPR algorithm and Schubert’s algorithm.



The CM-successive column correction algorithm is given in Section 2. A Kantorovich-type
analysis for this algorithm is given in Section 3. A g-superlinear convergence result and an r-
convergence order estimate of the CM-successive column correction algorithm are given in Section
4. The modified CM-successive column correction algorithm is given in Section 5. Some numeri-

cal results are given in Section 6.

In this paper, for a sparse matrix B, we use M to denote the set of pairs of indices (¢, j),

where b;; is a structurally nonzero element of B, i.e.
M= {(’1 J.) : bt'j 7£ 0} .

2. The CM-Successive Column Correction Algorithm and its Properties.

Given a consistent partition of the columns of the Jacobian, which divides the set

{1,2, ..., n} into p subsets ¢c;, ¢y, ..., ¢p, let

d* = h¥e.,
Pl o
where
=k ( mod p ), k=12,...,
and let
y* = F(z* + d*) - F(z*). (2.2)

The CM-successive column correction algorithm can be formulated as follows: If ¥ <p, then for
J€Ee,, the jth column of By is determined uniquely by the equation

Byd* = y*, (2.3)
and the other columns of By are equal to the corresponding columns of B,_;. If £ >p, the columns

of B, are displaced as described above successively and periodically. In other words, for jEc,-k, the

Jth column of B, is determined uniquely by (2.3), and the other columns of B, are equal to the

corresponding columns of B;_;.

For example (1.8), at the first iteration we displace the first group ¢; = {1, 4}. At the
second iteration we displace the second group ¢; = {2, 4}. At the third iteration we displace the

third group ¢y = {3, 6}, and then we displace the three groups successively and periodically.



The CM-successive column correction algorithm with a global strategy is given below.

Algorithm 2.1. Given a consistent partition of the columns of the Jacobian, which divides the set
{1,2,..., n} into p subsets ¢y, ¢y, ..., ¢, (for convenience, ¢;, ¥=1,2,...,p, indicates both the sets
of the columns and the sets of the indices of these columns), and given an z°€R® and a nonsingu-

lar matrix By, which has the same sparsity as the Jacobian, at the initial step:
(1). Set I =0.
(2). Solve Bys® = —F(2°).
(3). Choose z! by z! = 2z° + %, or by a global strategy.
At each iteration k£ > 0:
(1). Choose a scalar h*.
(2). If I < p, thenset! =1 + 1, otherwise set { = 1.
(3). Set

d* = Y hte;.

J'Ec,

(4). If j€¢; and (4, 5) € M, then set

1
b = Lo el(F G + ) - F&)), (24
otherwise set
bh = o},

where B, = [b}].
(5). Solve Bys* = —F(z*).
(8). Choose z**! by z*+! — z* 4+ &*, or by a global strategy.

(7). Check for convergence.

Let

1
Sy = [ F(z"+ed*)at . (2.5)
Then



Jpdt = y* . (2.6)
Let J, = [J&,]. Since J; has the same sparsity as the Jacobian, by (2.6), we have that if

(I, m) € M, then

61Ty *
hk

where m€c;,. Comparing (2.7) with (2.4), we have

Tl =

, 2.7)

Bkc,- == ch" y

for jEc,-k.

The CM-successive column correction algorithm is also an update algorithm, and the update

can be written as:

B, = Bk_l(I - E c,-c,-’) + Z ch,'c,'r.

J'EC.‘k J'Gc'-k (2'8)
From (2.8), it is easy to get the following result:
Lemma 2.2. Let By, k=1,2,..., be generated by Algorithm 2.1. If k>p, then
- T
Be= Y YJiue. (2.9)

J=k-p+1 lE¢,;
H
To study the properties of our algorithms, sometimes we assume that F ° satisfies the fol-
lowing Lipschitz condition: there exist a; >0, 1=1,2,...,n such that
W(F(z) - F(y))e; || <ei|lz - y||, =z,y€D. (2.10)

" 1
Let a=(Y,a?)2. Then, it follows from (2.10) that

i=1
HF(2)-F (W)lr<Lellz-yl|l, =z,y€D. (2.11)
Theorem 2.3. Let F* satisfy Lipschitz condition (2.10). Also let {z;}f_oCD and let {B;}}-q be
. 2
ated by Algorithm 2.1 with |A*| < W Lt [ (§
generated by Algorithm with | ]_-\7:-”3 =*1]

{z7+d?}}_,CD, then for k>p,

k . -
| Be~F (z)lr<a 35 [|2'-2]] . (2.12)

Jmk-p+1



Proof. By (2.5), (2.1) and Lipschitz condition (2.10),

H(F*(2™) = Tm)e; ||

= I(f, (F " (a™+tdm) - F*(z™))dt)e; |

1 o
Saf, 1™ | tde = —|]d"|| (2.13)
an
o L
J'Gt:,-,n

a-
< LR ] S agllam -l

where k-p+1 < m < k. It follows from (2.9) and (2.13) that
|F’(z*) - B ||

Il E (F (@) - BesefIIB

m=k-p+1 jec'«m

Y E ) - e 117

m=k-p+1 jec'»m

< Xk] Y (NEF @) = F(2™Ne; || + HF(z")-Im)e; |1)°

m=k-p+1 jEec,
m

< N Balllst -zl + []am - 2| (2.1

m=k-p+1 J'Gc.-m

k k
Y Y X -2

maxk-p+1 jCe, l=k-p+1
m

IA

k
=of( Y |l -2

l=ak-p41

Then, (2.12) follows from (2.14).

To start iteration (1.2) for a given z°€D, an initial matrix B, is needed. We suggest using
the CPR-CM algorithm to get B, since it is easy to implement after we have a consistent parti-

tion of the columns of the Jacobian.



3. A Kantorovich-Type Analysis.

By means of Theorem 2.3, we have the following Kantorovich-type analysis for the CM-

successive column correction algorithm.

Theorem 8.1. Assume that F “(z) satisfies Lipschitz condition (2.10). Let z°€D, and let By be a

nonsingular n X n matrix such that

l|Bo-F (z)lr <6, |IBs" [lr <8, [IB5'F(z)]| <n,

afin < 1

- <5 (3.1)
and
1
pE< 5 .
If 5(2°2t*)C D, where
. 12385, —
t' = 3af (1-v1-64) , (3.2)

then {z*}, generated by the CM-successive column correction algorithm with
| ¥ | 572—- || z* — 2z*!|| and without any global strategy, converges to z°, which is the unique
n

root of F(z) in 5(z° t)N D, where

_2afn ]
1+
[ (1- g6y ]
Proof. Consider the scalar iteration

th+l—tb = ﬂf(tﬁ)) ‘0=0) k =0,1; 2» T, (33)

where

1-386 n
—5 )t+ﬂ . (3.4)

It is easy to show that the sequence {¢,} satisfies the difference equation

1(6) = 3 at~(

o=t =38 [ (-t ety +8 (h-tia), k=12, -~ . (3.5)

From this equation, it follows that {¢,} is a monotonically increasing sequence and



lim ¢ = ¢ ,
oo
where ¢° is the smallest root of f(¢).

Now, by induction, we will prove that

z**-2* || < t-t, kE=1,2,---,

{zk} j §(¢°,t‘)’ k=1:27 T,

{z* + d*} c 5(2%2¢"),
and

”Bk-l“ S3/97 k=lx21 te
For k =0, we have

[|2'-2°|]| S n=1t1-txa < t".
Thus,
[z +d'-20|] < ||2'-2°]] + || d!]|] < 2][="-2%|] < 2¢°.

Suppose (3.6) holds for ¥ =0,1,...,m -1. Then,

m-1
l|z™-2% < Y (h-t)=1tm < t°.
i=0
Therefore, z™ € 5 (2°,t*), and

{z™ +d™} C §(2°,2¢°).

From the proof of Theorem 2.3, it can be seen that for all k,

k 3 .
| Bu-F " (z) ||l r S || B-F (29| r + )] || 27 -=77]| .
i=0

Therefore,

HB(-)_I(BM_BO)”
< 11B5* 15| B ~F“(z™) (|5 + | F*(z™)-F" ()l r + || F*(°)- Boll r)
< A2 P (12| +26)

V=0

< A2at* +26) < ﬂ(?-ﬂﬁ) -2

10

(3.6)
(3.7)

(3.8)

(3.9)

(3.10)



Thus, by Dennis and Schnabel’s Theorem 3.1.4 [6, p.45),

1 B
Ba Il < 1-273 =38 .

Hence,

”zm+l_zm ”

< BRI FIIF(z™)-F(z™") = Bp(z™ -z" ) ||

m-2 . .
385 12" -z || +a ) ||+ =af || +4]|z" -z
‘=0

a
S 3ﬂ[?(tm - tm-l) +a tm—l + 6](‘1!1 - tm—l) = tm+1 - tm .
This completes the induction step. By (3.8), it is easy to show that there is an z° € D such that

limz* ==z*
k—o00

The uniqueness of z° in 5(z° ¢ )N D can be obtained from Ortega and Rheinboldt’s Theorem

12.6.4 [12, p.425] by setting A(z) = B,.

4. Local Convergence Properties.
To study the local convergence of our algorithms, we assume that F:D C R® — R" has the
following property:

There is an z° €D, such that F(z°)=0 and F’(z"°) is nonsingular. (4.1)

Theorem 4.1. Let F:D C R® — R* satisfy (4.1), and let F’ satisfy Lipschitz condition (2.10).

Also let {z*} be generated by Algorithm 2.1 with |hA*] 372-”:" - z*!|| and without any
n

global strategy: Then, there exist ¢, § > 0 such that if z°€ D and B, satisfy

[12°-z"[| <€, ||Bo-F’(z°)|lr <8,

then {z'} is well defined and converges g-superlinearly to z°.

Proof. Notice that when ¢ and § are small enough, we have that A <

o)

, ﬂ6<% and that

§(z°,2t') C D where h, B and t* are defined in Theorem 3.1. Therefore, by Theorem 3.1,

11



*+d*eD, k=o0,1, --- .

By (28),
B, - F*(z*)
= (Byoy ~ F’(z*)I - z: ejef) + z: (Ji - F*(2*))eje . (4.2)
Thus, k t
1 h=F () |1 ¢

= |1 (P (a*—td*)-F (2" )it || 5
Sa(lla*=z || + g 1d*]]) (43)
< alllz*=2* | + || * - 2+1]])

< a2||z*-2"|| + ||z* - 2°|]).
Let o(z*! , 2*) = max {||z* - z*|| , [|#** - 2* || }. Then it follows from (4.2) and (4.3) that

By = F (") lr < [|Besr = F*(@)Ir + [ e - F (=") |
< |Bus - F*(s") || + 3ao(a* , ).
Thus, by Dennis and Moré’s [5] Theorem 5.1, we know that {z*} converges at least g-linearly to

»
z .

According to Dennis and Mor€’s [5] Theorem 3.1, to get g-superlinear convergence, we need

only to prove that

i NB-F @Y

e (e

0. (4.4)

From (2.12), it follows that
Jim || By - F*(z")||= 0. (4.5)

This implies (4.4).

Theorem 4.2. Assume that F satisfies the hypotheses in Theorem 4.1. Then the r-convergence

order of Algorithm 2.1 is not less than 7, where 7 is the unique positive root of

Pl _1=0.

12



Proof. Notice that (4.5) implies that there exist kg and >0 such that ||Bg'|| <8 for all

k > ky. Thus, by Theorem 2.3,

[|e*+!~2°|| = ||2* 2" - Bi'F(a*)]]
< B IF{IIF(*)-F(z")-F(z")(=* -2°) |
+(I1F(2°)-F () [l + |F"(e*)-Be | ) [1 2 ~2* ||}

3 . . .
< Blgalls-2"|l +a 35 |12/ =27 ||}]2*-2"]

J=k-p
k -
Xk) Nzi-2*|) |24 -2"]] .
=k-p

Thus, the desired result follows from Ortega and Rheinboldt’s Theorem 9.2.9 12, p.291].

5
< '50'/3('

2

6. The Modified CM-Successive Column Correction Algorithm.

Estimate (2.12) shows that when p is small, B, is a good approximation to F ’(z*). How-
ever, By still retains information from the previous p steps. Therefore, the following question is
reasonable: Can we have a better approximation to F '(z* ) without more function evaluations?
Notice that when we get B, by Algorithm 2.1, we did not use the value of F(z*). The main idea
of the modified CM-successive column correction algorithm stated below is to use all the informa-

tion we already have to improve our approximation to F *(z*).

Algorithm 5.1. Given a consistent partition of the columns of the Jacobian, a vector z° and a non-

singular matrix B, with the same sparsity as the Jacobian, at the initial step:
(1). Set | = 0 and By = B,.
(2). Solve Bys® = —F(z9).
(3). Chooee z! by z! = 2°+4°, or by a global strategy.
At each iteration k>0:
(1). Update B;_, by Algorithm 2.1 to get B,.
(2). Update B, by Schubert’s update to get B,.

(3). Solve B, s* = —F(z*).

13



(4). Choose z**! by 2**! = z*+4*, or by a global strategy.
(5). Check for convergence.

Our numerical results show that Algorithm 5.1 usually requires fewer iterations than Algo-
rithm 2.1. Especially, when the problem is not well behaved, and a global strategy is used, the
modified algorithm behaves significantly better than Algorithm 21 The cost of the improvement
is the computation of Schubert’s update. However, since the Jacobian is sparse, Schubert’s
update requires only O(n) operations. We feel that it is worth doing this rather than computing

more function values and solving more linear systems.
Now we will briefly discuss the convergence properties of Algorithm 5.1. Let

T = [ F (e + o - )t (5.1)

- k k-1
Since J; performs exactly the same as the secant factor ﬂ"’_;f_f_é_ﬁl_l in one dimensional prob-
"z

lems, we call J, the secant operator. It is easy to show the following result.

Lemma 5.1. If F° satisfies Lipschitz condition (2.10), then

13- Fr e S22 -+ . (52)

Estimate (5.2) shows that J; is a good approximation to F *(z*) when || z* — z*7!|| is small.

Theorem 5.2. Let F* satisfy Lipschitz condition (2.10). If {B,} and {B,} are generated by Algo-

rithm 5.1, then

Bk - Tellr < 1By - Tl r. (5.3)
If, in addition, B, £ B,, then the strict inequality holds.
Proof. Since J,€Q, ,NZ, by Theorem 1.1, we have

B - Z||} + ||Bs - Be || = ||Bs - T |1 2. (5.4)
Then, (5.3) follows from (5.4).

Notice that in general, By 7 B,. Therefore, by Theorem 5.2, B, is usually closer to the

secant operator J, than B;. Thus, B, should be a better approximation to the Jacobian than B,

14



when B, retains some information from previous steps. But theoretically, we can not get a better
estimate for || By — F“(z*)]|| r than that for ||B, — F “(z*)|| r. However, we can get the follow-

ing result:

Theorem 5.8. Let F : R® — R* satisfy Lipschitz condition (2.10). Also let {B;} and {z*} be
generated by Algorithm 5.1. Then,

— h » 3
| Be-F (ze)llp <20 3} [l27-27]] . (5-5)

F=k-p+1
Proof. By (5.3),

| Be~F " (z) || r
SUB-Jllr+ 1 h -F (z*)lF
SUBi-dillr+ % -F (="l F

SHB-F () r+ 2| -F (")l
Then, from (2.12) and (5.2), we obtain (5.5).
From estimate (5.5), it is easy to prove that Algorithm 5.1 has at least the same local con-

vergence properties as Algorithm 2.1.

6. Numerical Results.

We computed some examples with tridiagonal Jacobians by the CPR algorithm, Schubert’s
algorithm, Algorithm 2.1, and Algorithm 5.1. In this section, we compare the numerical results
from these four algorithms. The global strategy we used in computing the examples is the line
search with backtracking strategy (see Dennis and Schnabel (8, p.126]). For the CPR algorithm, if
p* = -By'F(z") is not a descent direction, then we try —p*. If it is not a descent direction either,
then the algorithm fails. For the other algorithms, if p* is not a descent direction, then we try
—ps. If it is not a descent direction either, then we try the CPR direction. If the CPR direction
fails, then the algorithm fails. In the CPR algorithm, Algorithm 2.1 and Algorithm 5.1, at step k,
we use different h,? for each component of z* instead of one uniform A*. According to Dennis and

Schnabel [6, p.98], we choose

15



h,‘-' = Vmacheps z,’-‘.

The stopping test we used is

|24+ — 2}
m €
1<i<wmax{ | zf 4!, typz;}

and we choose ¢ = 10°. We used double precision, and the machine precision is 2.22d-18.

Example 6.1 was given by Guangye Li 8], and it can be seen to be an extension of the
Rosenbrock [16] function (also see Moré, Garbow and Hillstrom [11]) to nonlinear system of equa-
tions with tridiagonal structure. Example 6.2 was given by Broyden [1] (also see Mor€, Garbow
and Hillstrom [11]). Example 6.3 was given by Mor€ and Cosnard [10] (also see Mor€¢, Garbow and
Hillstrom [11]). The results are shown in the tables below, where IT is the number of iterations,
NF is the number of function(F(z)) evaluations, and LN is the number of line searches in which

the step length A <1. ND is the number of nondecrease directions. z0 is the initial guess.

Ezample 6.1.
fi(z) = 8(z-23),
fi(z) = 182;(z} - z;.,) - 2(1 - ;) + 8(zj-2}1), 5= 2,..., n-1,
falz) = 182, (2 - 2,4) - 2(1 - 2,),
n=29,

gl =(-1,-1, ..., -1)T, 22 =(-05,-05, ..., 05)7, 23 =(2,2, ..., 2)T.

z0=z1 10=z2 z0=2z3
Algorithms
IT |NF |LN|ND J|IT]|NF |LN]|IND|IT|NF |LN ]| ND
CPR 22 88 15 0 22 88 15 0 8 32 0 0
Schubert 38 41 21 7 53 56 47 5 33 38 13 5
Alg. 2.1 fail 56 | 114 46 14 13 28 0 0
| Alg. 5.1 24 50 14 0 24 50 15 0 14 30 1 0

Table 6.1.
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Ezample 6.2 (Broyden tridiagonal function).
f.-(z) == (3 - 22,-)2.- - %y — 2Z;+1 + 1,

o= Tu41 = 0,

n =9,

21 =(-1,-1,..,-1)T, 22 =(-03,03, ..., 0.3, 0.3)T,

z3 = (-10, -10, ..., -10)T.

z0=z1 20=22 20=23
Algorithms
IT| NF|]LN|ND|[IT|NF|LN|NDJ|IT|NF |LN]|ND
CPR 5 20 0 0 8 24 1 0 8 32 0 0
Schubert 7 10 0 0 11 14 2 0 27 30 3 2
Alg. 2.1 8 14 0 0 8 18 2 0 12 26 0 0
Alg. 5.1 6 14 0 0 7 16 2 0 11 24 0 0
Table 6.2.
Ezample 6.8 (Discrete boundary value function).
h2
filz) =2%; -z — 24y + ?( z + 4 +1)°
1 t, = sh Tg=1=2Ta41 =0
- n+1 ’ { I » 0 “a4l — Y-
n=29,
21 =(n;)T, n; =4(t;-1), 22=(-1,-1, .., -1)T,
3 = (10, 10, ..., 10)T.
z0=21 20=2z2 z0=23
Algorithms
IT |NF |LN|ND|IT|{NF |LNJ|ND|IT|NF |LN|ND
CPR 3 12 0 0 4 18 0 0 8 32 0 0
Schubert 4 7 0 0 5 8 0 0 17 | 20 2 2
Alg. 2.1 4 10 0 0 8 14 0 0 12 26 0 0
Alg. 5.1 4 10 0 0 5 12 0 0 10 22 0 0
Table 8.8.
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7. Concluding Remarks.

We have presented two algorithms for solving sparse nonlinear systems of equations. The
CM-successive column correction algorithm (Algorithm 2.1) is based on Coleman and Mor€’s par-
titioning algorithm and the column-update algorithm. This algorithm uses only two function
values at each iterative step, and it is g-superlinearly convergent. Using this algorithm, one
group of the columns of B, is displaced at each step. Actually, it is not necessary to update just
one group at each iterative step. Instead, we can displace several groups at each iteration, and
this gives the algorithm a faster convergence rate. However, if one more group is displaced, then
one more function value is required. Therefore, the efficiency of the algorithm depends on the

number of the groups displaced at each iterative step.

The modified CM-successive column correction algorithm (Algorithm 5.1) is a combination
of the CM-successive column correction algorithm and Schubert’s algorithm. It is also ¢-
superlinearly convergent. Our numerical results indicate that the modified successive column
correction algorithm usually behaves much better than the CM-successive column correction algo-
rithm. However, we have not been able to prove better theoretical convergence results for the
modified CM-successive column correction algorithm than those for the unmodified one. Addi-
tional numerical results indicate that the modified CM-successive column correction algorithm is
also usually more efficient than the CPR-CM algorithm and Schubert’s algorithm. When the prob-
lem is not well behaved, or the initial guess is far away from the solution, the modified CM-

successive column correction algorithm is much more efficient than Schubert’s algorithm.

The idea of the CM-successive column correction algorithms can also be used with Powell
and Toint’s [14] work, which will lead to methods for unconstrained optimization problems. This

will be our future work.
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